EP 1162 536 A1

- (19) p)

Européisch s Patentamt
European Pat nt Office
Oftfice ur péen des brevets
(12)

(43) Date of publication: -
12.12.2001 Bulletin 2001/50

(21) Application number: 60304904.6

(22) Date of filing: 09.06.2000

T

(1) EP 1162 536 A1

EUROPEAN PATENT APPLICATION

(51) IntCL.7: GOGF 9/46

(84) Designated Contracting States:
ATBECHCYDEDKESFIFRGBGRIEITLILU
MC NL.PT SE
Designated Extension States:
AL LT LV MK RO SI
(71) Applicant: Hitachl, Ltd.
Chiyoda-ku, Tokyo 101-8010 (JP)

Inventors:
Ohno, Hiroshi
Hitachi-shl, Ibarakl 319-1225 (JP)
+ Nakamura, Tomoaki
Hitachlnaka-shl, Ibaraki 312-0052 (JP)
. » Kaneko, Shigenori
Hitachinaka-shl, Ibarakl 311-1246 (JP)

(72)

(74)

+ Yoshlzawa, Ryokichl
Hitachinaka-shl, Ibaraki 312-0012 (JP)
+ Kato, Naosh!
Hitachinaka-shi, Ibaraki 312-0054 (JP)
+ Yamauchli, Manabu
Hitachl-shi, Ibaraki 316-0014 (JP)
« Aral, Toshiakl
Machida-shi, Tokyo 194-0011 (JP)
+ Sekiguchi, Tomoki
Yokohama-shi, Kanagawa 225-0001 (JP)

Representative: Hackney, Nigel John et al
Mewburn Ellis,

York House,

23 Kingsway)

London WC2B 6HP (GB)

(54)

(57) Aninter-OS control software for switching OS's
in operation executed on a single CPU is installed; and
plural OS's are made alternately executed. A control
program is executed exclusively on one OS, which con-
trols the controlled apparatus. A supervisory control pro-

Muitiple operating system control method

gram and a development environment program are ex-
ecuted on another OS, and a memory space is divided

' s0 as to make no effect for the operation of the control

program. A higher real-time performance and reliability
can be established with a single CPU architecture.

FiG. 1
25 26
;2’4 L }/ L !

SUPE| DEVELOPMENT
AND Rd‘llwll'sl%l ENV L RONMENT CONTROL PROGRAM
PROGRAU PROGRAM 2

OPERAT ING 1/ T OPERATING 20

SYSTEM A T |7

{0S-A)

0S-A_EVENT
.71 ~——1{PROCESS ING TABLE

INTER-0S CONTROL| SYSTEM B
SOFTWARE

0S-A EVENT g
PROCESSING TABLE,

(0s-8)

72

21

AN

1%
CENTRAL L
PROCESSING uniT | | (P
| 13
 TPHYS ICAL MEMORY)
C {
131 132
CONTROLLE
AN APPARATUS |\ 5

Printed by Jouve, 75001 PARIS (FR)

1 Sl U I Wa W FR 0 . -

scriptl n

[0001] The present invention relates to a control
method of the control apparatus using a digital arithme-
tic processor for plant instrument control and/or various
machine control, and specifically, to a control method
for the multiple operating system in which piural operat-
ing systems are executed on an single processor.
[0002] In the control apparatus such as programma-
ble logic controller (PLC) or numerical control apparatus
(CNC) often used for plant instrument control and vari-
ous machine controls, procedures for control logic are
executed mainly. The functions other than procedures
for control logic including the function for inputting the
contro! logic into those control apparatus (development
environment) and the functions for supervisory opera-
tion for the controlled status and for allowing the user to
input the data in an interactive manner (human machine
interface) are often realized by another apparatus such
as personal computers (PC's) connected outside the
control apparatus (hereinafter referred to as user inter-
face apparatus.) In case that those functions are em-
bedded in a single apparatus, those functions are exe-
cuted by the individual internal arithmetic processors. A
technology related to this kind of apparatus is disclosed,
for example, in Japanese Patent Application Laid-Open
Number 9-62324 (1997).

[0003] The performance of PC's used as a user inter-
face apparatus has increased, and thus, computational
power can be provided so that a single PC may cover
the functions from the control logic operations to the de-
velopment environment and the supervisory control up
to a certain scale of control systems. However, in case
of using a contro! apparatus comprising a PC-based
hardware architecture supporting all of the system func-
tions and applying an operating system (OS) generally
used in PC's, the operations of the programs and the
device drivers other than the control programs may af-
fect the operation of the control programs themselves.
[0004] There is such a technology that computer re-
sources are shared in common with multiple OS's and
the functions generic to the individual OS's are used by
loading and running plural OS's on an single CPU. Ex-
amples of this technology are disclosed in Japanese
Patent Application Laid-Open Number 5-73340 (1993),
Japanese Patent Application Laid-Open Number
5-27954 (1993) and Japanese Patent Appilication Laid-
Open Number 5-151003 (1993).

[0005) Privileged instructions are executed generally
in OS's. Therefore, some disability occurring in one of
0S's may affects the execution of the other OS's. How-
ever, this affect is not considered in the technology in
which plural OS's are loaded and ran simultaneously on
a single computer, and hence, even by means of isolat-
ing the influence of the disabled OS over the other OS’s
by emulating th disabl d OS by the other OS's as de-
scribed in and Japanese Patent Application Laid-Open
Number 5-1510003 (1993), the influence may be prop-

10

15

20

25

30

35

40

45

50

55

agated onto the operations of both OS's in case that
some disability may occur the OS emulating the disa-
bled OS.

[0006] Preferably, in the present invention, in order to
solve the above problems, a software for controlling
OS's is loaded in order to switch th executing OS'’s so
thatplural OS's may be operated alternately. The control
software is made executed on the OS with higher relia-
bility, and the user interface program is made executed
on the OS with rich functionality, and thus, OS's each
having specific characteristics are made executed on a
single CPU. In responsive to the generation of interrupt
orthe request signal from OS's or the software programs
running on OS's, this inter-OS control software stores
and revises the context information of CPU operations
(for example, register values of CPU), switches the
memory spaces and restarts the OS operations in an-
other context stored in past. In other words , the opera-
tion of the running OS is terminated and the operation
of other OS's is restarted. In addition, the inter-OS con-
trol software has a function which monitors start-stop
operations of the running OS'S and controls the start-
stop operation of the individua! OS's independently. Ow-
ing to this configuration, it will be appreciate that the
hardware and software in the control apparatus can be
partially initialized and that the disabled part can be au-
tomatically recovered, which leads to higher reliability of
the total system.

[0007] Preferably, individual memory spaces occu-
pied for the individual OS's and a memory space shared
and accessible commonly by plural OS's are defined on
the physical memory. Owing to this configuration, the
individual memory spaces for the kernel and the pro-
grams are so defined that the interference among OS's
such as data destruction may be avoided and that the
necessary data may be shared by the programs each
executed on the difference OS's. In addition, the system
has such a function that the program running on a cer-
tain OS waits for the event issued by the other OS's and/

" orthe programs running on those OS's and the inter-OS

control software notifies this event. Owing to this con-
figuration, a communication function between the pro-
grams running on the different OS's can be established.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008]

FIG. 1 is a block diagram of the embodiment using
the present invention.

FIG. 2 is a schematic diagram of memory usage in
the control apparatus.

FIG. 3 is a flowchart showing procedures for the in-
terrupt operation in the execution of OS-A.

FIG. 4 is a flowchart showing procedures for the in-
terrupt op ration in the execution of OS-B.

FIG. 5 is a flowcharnt showing procedures for the
switching operation of OS's.

3 : EP 1 162 536 A1 4

FIG. 6 is a schematic diagram showing a function
for issuing and notifying events.

FIG. 7 is aflowchart showing procedures for restart-
ing OS-A exclusively.

PREFERRED EMBODIMENTS OF THE INVENTION

[0009]) FIG. 1 shows a bock diagram of the control ap-
paratus in one embodiment of the present invention.
[0010] The hardware for the control apparatus 1 com-
prises a central processing unit (CPU) 11, a physical
memory 12, a timer 14, a user input output apparatus
16, a network interface apparatus 18 and a interrupt
controlier 19. This structure is the same as the structure
in a general purpose personal computer (PC). The con-
trol apparatus 1 has a network interface apparatus 18
-connected to the network 3, and uses it for communi-
cating with another control apparatus and reporting the
control result to the host computer. The control appara-
tus has an input and output apparatus connected to the
controlled apparatus 2 for exchanging signals, and ac-
quires the information from the controlled apparatus 2
and issues the operation instruction to the controlled ap-
paratus 2. The interrupt controller 19 of the control ap-
paratus 1 relays the interrupt signal from the individual
components of the control apparatus 1 to CPU 11 and/
or masks the interrupt signal.
[0011] The software of the control comprises an op-
erating system A (OS-A) 21 and an operating system B
(OS-B) both for the hardware resource management
and the executive control of the program running on it,
an inter-OS control software 23 for switching OS-A and
OS-B, a supervisory control program 2 and a develop-
ment environment program 25 both executed on OS-A,
and a control program 26 executed on OS-B. OS-A, OS-
B and the inter-OS control software 23 are operated on
an single CPU 11 in a privileged mode and enabled to
execute all the instructions including the privileged in-
structions for controlling CPU 11 itself. On the other
hand, the pregrams running on the individual OS's are
operated in a non-privileged mode and can not execute
privileged instructions. OS-A and OS-B contains device
drivers operating in a privileged mode as well as the OS
kernel, and in the following, those devices are discussed
$0 as to be unified in the OS kernel.
[0012] The input and output apparatus 12 is controiled
and occupied by OS-B. On the other hand, the user input
and output apparatus and the network interface appa-
ratus 18 used by the programs operated on OS-A are
controiied and occupied by OS-A. Such a configuration
is allowed that such a exigency user input and output
apparatus as emergency stop button and alarm signal
output and/or such a network interface apparatus as re-
quiring real-time characteristics for communicating with
another control apparatus may be controlled and occu-
pied by OS-B and accessed by the programs running
on OS-B. The physical memory 13 are separated into
the area 131 for OS-A and th area 132 for OS-B. The

10

15

20

25

30

35

40

45

50

55

hard wares accessed directly by the inter-OS control
software 23 are limited to the timer 14 and the interrupt
controller 19. '

[0013] At first, the overall operation of the software
and its relation to the hardware are described. In this
embodiment, OS-A is assumed to be a general purpose
OS commonly used in PC's. OS-A provid s sophisticat-

ed user interfaces for the supervisory control program . '

24 and the development environment program 25. OS-
A and the programs running on OS-A operate in the sim-
ilar mannerto the case that OS-B does not exist. Though
the inter-OS control software 23 interrupts the operation
of OS-A, and OS-B is switched over OS-A, as the inter-
OS control software 23 recovers the interrupted opera-
tion of OS-A and restarts OS-A after completing the op-
eration of OS-B, it is not necessary for OS-A to recog-
nize the existence of OS-B.

[0014] On the other hand, OS-B is assumed to be on
that is characterized as higher real-time performance
and optimized for control programs. OS-B yields its ex-
ecutive status to OS-A when the programs running on
OS-B have no more operations to be executed (herein-
after referred to as "idle status".)

[0015] The inter-OS control software 23 provides
functions for switching the execution status between
OS-A and OS-B, and for communicating among pro-
gramson OS's. The Sw'rtching operation of the execution
status from OS-A to OS-B is performed in case that i)
an interrupt occurs at the hardware controlled by OS-B,
ii) a pre-defined period of time has passed or iii) OS-A
communicates to OS-B. The switching operation of th
execution status from OS-B to OS-A'is performed only
when OS-B turns into an idle status as described above.
OS-B has always a execution status in preference to
OS-A owing to this switching operation. The inter-OS
contro! software 23 operates only when the switching
operation is initiated and the communication between
OS's are requested, and the individual OS's are operat-

" ed independently otherwise. The privileged instructions

to CPU 11 are issued by the individual OS's, but are not
emulated by the inter-OS control software 23. It is re-

‘quired that the inter-OS control software 23 may oper-

ates as a part of the individual OS's so as to enable to
execute privileged mode instructions every time when
either of OS's is executed. In particular, the inter-OS
control software 23 is so embedded as to operates as
a device driver for OS-A when OS-A is executed as a
general purpose OS.

[0016] As described above, hard wares are so as-
signed to OS-A and OS-B as to be occupied and con-
trolled by the individual OS's, and the operation status
of OS’s are switched alternately, and the individual OS's
are executed independently after the switching opera-
tion. The inter-OS control software 23 switches the ex-
ecution of both OS's and provides the communication
function betw en both OS's.

[0017] Next, a method for establishing the independ-
ency between OS's is described. At first, a method for

9 =4 i |

protecting the hard wares controlled and supervised by
the individual OS from interference by another OS's.
The interaction between individual hard wares and soft-
ware includes the input and output operation for the /O
addresses assignedto the individual hard wares and the
response operation of the software to the interrupts with
their interrupt numbers each assigned to the individual
hard ware. Thus, the independency between OS's with
respect to the hard ware control is established by en-
suring that the input and output operation to the /O ad-
dresses assigned to the hardware controlled and man-
aged exclusively by one OS and the response operation
to the interrupt number assigned to this hardware may
not be executed by the other OS.

[0018] In order to specify which OS should manage
and occupy the individual hardware, the VO address and
the interrupt number assigned to the hardware are uni-
fied and stored in the interrupt table in the inter-OS con-
trol software 23. The inter-OS contro! software 23 initial-
ize the device driver of OS-A atthe start-up of the control
apparatus 1. In its initialization process, the I/O address
and the interrupt number of the hardware for OSB are
reserved and made registered in the interrupt table. By
this process, the kernel of OS-A and the other device
drivers of OS-A recognize that the corresponding VO ad-
dress and interrupt number are occupied, and then, the
operation to those hard wares by OS-A is disabled. On
the other hand, by means that the /O address and the
interrupt number of the hardware occupied by OS-A are
made acquired by OS-B directly from the inter-OS con-
trol software 23 and registered in the interrupt table, the
operation to those hard wares by OS-B is made disa-
bied. According to the above procedures, the independ-
ency between OS's with respect to the hard ware control
is established. i
[0018] The input and output operationto the hardware
is executed by OS-A and OS-B, respectively, and is not
emulated by the inter-OS control software 23. Owing to
this procedure, the additional overhead due to the em-
ulation of the input and output operation can be prevent-
ed as well as the kernel and device drivers assumed to
access directly to the hardware may not be modified.
[0020] Nest, a method for establishing the independ-
ency of the physical memory space used by the individ-
val OS's is described. The independency of the physical
memory 13 is established by defining the memory areas
used separately for OS-A and OS-B, respectively The
memory area used commonly with OS-A and OS-B is
defined for sharing the data between both OS's.
[0021] In order to define the separated areas individ-
ually occupied by OS-A or OS-B, at first, OS-A is made
started when the control apparatus 1 starts up, and then,
the memory areas are so defined that the physical mem-
ory area lower than the designated address specified by
the start-up option of OS-A may be occupied by OS-A.
After start-up of 0S-A, OS-B is made started by loading
OS-B onto the physical memory area higher than the
designated address. The kernel of OS-B acquires the

1V& YW i~ -

10

15

20

25

30

35

40

45

50

55

designated address recorded on the table in the inter-
OS control software 23, and uses the area which is not
used by OS-B under the memory management.

[0022] There are two cases for the memory area com-
monly shared by OS's. In one case, the memory area
for the OS-A is made mapped on the address space for
OS-B. In this case, the inter-OS control software 23 re-
quests the memory management mecnanism or the ker-
nel of OS-B to add the address of the physical memory
to be shared to the logical address conversion table
(hereinafter referred to as "page table") for the physical
memory for OS-B and to make the physical memory cor-
respond to the logical address (hereinafter referred to
as "memory mapping” or simply to "mapping"”.) In the
other case, the memory area for OS- is made mapped
on the address space for OS-A. In this case, the inter-
OS control software 23 reserves the address of the
physical memory to be shared as a device driver of OS-
A. Inthis case, a function of OS-A for realizing the device
driver of the memory-mapping type physical device is
used. Owing to this configuration, the kernel of OS-A
maps the physical memory to be shared onto the page
table for OS-A, which establishes the sharing of the des-
ignated common memory area. _

[0023] Next, a method for establishing the independ-
ency of the logical address spaces of the individual OS's
is described. OS and the programs executed on it ac-
cess to the memories with reference to logical address-
es, and the conversion from logical addresses to phys-
ical addresses are automated by CPU referring to the
page table. The individual memory management func-
tions embedded in OS-A and OS-B operates the page
table and perform the mapping operation. At this time,
by means that the page table is made separated into
tables each used exclusively by the individual OS and

“switched in responsive to the OS’s operation privilege,

the mapping operation can be executed independently
by the individual OS.

[0024] The page table is a table located on the phys-
ical memory, and CPU has a register specifying the start
physical address of the table. CPU obtains the address
position of the page table from this register, and auto-
mates the address conversion in responsive to the ob-
tained information. Therefore, the individual page table
areas for OS-A and OS-B are defined independently on
the physical memories, and the content of the register
specifying the page table position is made switched so
as to specify the page table for OS switched to be ena-
bled in the OS switching operation by the inter-OS con-
trol software 23. Owing to this procedure, both OS's can
operates the mapping on the individual page tables, and
thus, the independency of the iogical address spaces
can be established.

[0025] The memory usage scheme described above
for the physical memory space and the logical address
space is shown in FIG. 2. The physical memory space
51 is made delimited into several areas including an ar-
ea 52 for the kernel of OS-A, an area 54 for the OS-A

7 EP 1162536 A1 8

programs, an area 56 for the kernel of OS-B and an area
57 for OS-B programs, which are made enabled to be
accessed by the individual resources assigned to OS-A
and OS-B. The logical address spaces 61 and 62 for the
memories recognized by OS-A and OS-B are independ-
ent logical address spaces corresponding to the inde-
pendent page tables of the individual OS's. When OS-
A is executed, the physical memory spaces 56 and 57
occupied for OS-B are not mapped onto the logical ad-
dress space 61. Owing to this configuration, the areas
for OS-B are not accessed by OS-A with its execution
enabled, which leads to preventing the data from being
damaged accidentally. When OS-B is executed, in con-
trast, the physical memory spaces 52 and 54 occupied
for OS-A are not mapped onto the logical address space
62. As the inter-OS control software 23 should operates
in either case of OS's alternate execution, the memory
area 53 is mapped in either OS and accessible by the
programs executed on the individual OS's and available
for exchanging data between programs executed on the
individual OS's. By means that the sharable area for OS-
A and OS-B is limited to be used for the programs exe-
cuted in a non-privileged mode, it will be appreciated
that the kernel and device driver for one OS is made not
affected by the other OS and its programs, and the in-
dependency and reliability of the individual OS's can be
stablished. It is allowed that the individual area may be
made segmented and distributed for the managed unit
of the address conversion mechanism of CPU 11 on the
physical memory area 51.
[0026] According to the methods described above,
the dependency of OS's can be established.
[0027] Next, the operation of the inter-OS control soft-
ware 23 is described in detail. When the inter-OS control
software 23 is called explicitly by the individual OS's or
their programs and an interrupt is applied to CPU, it is
made started up. As the inter-OS control software 23 is
embedded as a device driver of OSA, the call by OS-A
or programs executed on it is realized as an operation
instruction directed to the corresponding device driver
(for exampie, IOCTL instruction). As OS-B recognizes
the existence of the inter-OS control software 23, OS-B
or programs executed on it are called as a function all
from the procedure in the kernel of OS-B. As CPU 11
calls the interrupt handler by referring to the interrupt
table located on the physical memory 13 when an inter-
rupt occurs, all the interrupt handlers are defined as rou-
tines in the inter-OS control software 23 by modifying
the interrupt table. Owing to this configuration, the inter-
OS control software 23 is activated when any interrupt
occurs, which leads to establishing adequate proce-
dures. '
[0028] Once the inter-OS control software 23 is made
start up, it switches OS's in responsive to its causal
v nt, and performs necessary procedures for commu-
nicating betw en OS's. Its procedural steps are de-
scribed in detail below.
[0029] FIG. 3 shows the procedural steps for the case

10

15

20

25

30

35

40

45

50

55

that an interrupt occurs while OS-A with its execution
being defined with nonpriority is in operation. As the re-
sult of the interrupt input, an interrupt processing routine
ofthe inter-OS control software 23 is called, and the pro-
cedures shown in FIG. 3 are executed. At first, the con-
tent of the register when the interrupt occurs is trans-
ferred onto the stack and a stack frame is generated

(S01). Next, by referring to an interrupt number (vector),

what is judged is whether the interrupt is a software in-
terrupt or a hardware interrupt (S02). In case of the soft-
ware interrupt, the cause of the interrupt is either a case
that an interrupt instruction is issued explicitly by the
process of OS-A in operation or a case that an exception
occurs due to its program operation, and in either case,
the interrupt handier of OS-A itself is called. On the other
hand, in case of the hardware interrupt, which hardware
makes the cause of the interrupt is judged (S03). In case
that the interrupt comes from the hardware managed by
OS-A, the interrupt handler of OS-Aitself is calledinth
similar manner to the software interrupt. In contrast, in .
case that the interrupt comes from the hardware man-
aged by OS-B, the operation environment is switched
to OS-B (S04), and then, the interrupt handler of OS-B
itself is called. In case that the interrupt is a timer inter-
rupt, the time when the interrupt occurs is identified
(S05), and if the identified time is a time when the timer
for OS-A or OS-B should be time up, the timer handler
of the individual OS itself is called. In case that both tim-
ers reach the time for the scheduled time-up, the time-
up of the timer for OS-A is made withheld, and only the
timer handier of OS-B with its execution given priority is
called. E

[0030] FIG. 4 shows the procedural steps for the case
that an interrupt occurs while OS-B with its execution
being defined with priority is in operation. In this case,
as in the similar manner to the case that an interrupt:
cccurs while OS-A is in operation, as the result of the
interrupt input, an interrupt processing routine of the in-
ter-OS control software 23 is called, and the procedures
shown in FIG. 4 are executed. At first, the content of the
register when the interrupt occurs is transferred onto the
stack {S11). Next, by referring to an interrupt number
(vector), what is judged is whether the interrupt is a soft-
ware interrupt or a hardware interrupt (S12). In case of
the software interrupt, the interrupt handler of OS-B in
operation is called. In case of the hardware interrupt, the
interrupt controller 19 is made operated when enabling
OS-B to be in operation, and the interrupt from the hard-
ware managed by OS-A is masked. Thus, the interrupt
by the hardware managed by OS-A doe not occur while
OS-B is in operation. In case that an interrupt occurs at
the hardware managed by OS-B, the interrupt handler
of OS-B itself is called in the similar manner to the case
for the software interrupt. However, in case that the in-
terrupt is a timer interrupt, the time when th interrupt
occurs is identified (S14), and if the identified time is a
time whenth timerfor OS-B shouidb time up, the tim-
er handler of OS-B itself is calied. If the identified time

9 =

is a time when the timer for OS-A should be time up, the
fact of the occurrence of the time up is recorded (S15),
and the operation of OS-B is recovered. As the system
has such a hardware configuration that the operation of
the interrupt controller 19 is not allowed explicitly, the
cause of the interrupt is judged to be an apparatus man-
aged by OS-A, the fact of the occurrence of the interrupt
is recorded when the cause of the interrupt is judged
(S13), and the interrupt handler of OS-A itself may be
called when enabling OS-A to be in operation.

[0031] The above description refers to the operation
in case that OS-B is made given priority completely. In
this process, the operation for switching from OS-B to
OS-A is executed only when OS-B turns into an idle
state, and a process for notifying the fact of the idle state
from OS-B to the inter-OS control software 23 is called.
In view of the avoidance of the deadlock when OS-B
gets into an infinite loop, an operation of OS-A is sched-
uled in a definite time fraction. Thus, an timer interrupt
is made occur at the time other than the time when the
timers for OS-A and OS-B are count up, and OS's are
switched in the interrupt process of the inter-OS control
software 23. In the inter-OS control software 23, the ex-
ecution time for the individual OS's are estimated before
hand. i a timer interrupt occurs while OS-B is in opera-
tion, whether the time for switching from OS-B to OS-A
has come is judged by referring to the pre-defined exe-
cution time of OS-B (S16), and then, if the time for
switching to OS-A has come, OS-A is made enabled to
be in operation (S17) and the procedure goes to the in-
terrupt point for OS-A. If the time for switching to OS-A
has not come, the procedure visits again the interrupt
point at the time when the interrupt of OS-B occurs. In
contrast, a timer interrupt occurs while OS-A is in oper-
ation, in the procedure shown in FIG. 3, whether OS-B
is staying in an idle state is judged (S06), and then, if
OS-Bis notin an idle state, whether the time has passed
for going back to OS-B is judged (S07). If the time has
passed for going back to OS-B, OS-B is made enabled
to be in operation (S08), and the procedure goes to the
interrupt point for OS-B. However, if OS-B is staying in
an idle state or the time has not passed for going back
to OS-B, then the procedure visits again the interrupt
point at the when the interrupt of OS-A occurs again.
[0032] FIG. 5 shows a detail procedure of switching
OS's in the inter-OS control software 32. The OS switch-
ing procedure is invoked in case that the switching pro-
cedure is required in the interrupt process described
above, that OS-B turns into an idle state or that the
stand-by state of the stand-by program of OS-B is re-
quired to be cancelled in responsive to the notification
of the event which will be described later. At first, the
context at the point (hereinafter referred to as "interrupt
point”) when the intérrupt occurs or the inter-OS control
software 23 is invoked is stored (S31). This means that
the stack frame position where the content of the regis-
ter in CPU11 at the interrupt point is recorded and the
values of the instruction counter and the stack pointer

10

15

20

25

30

35

40

45

50

55

0% JIV RS Al

are recorded. Next, the property of the interrupt control-
ler 19 is modified so as to apply a mask for preventing
the interrupt of OS-A while OS-B is in operation or to
cancel a mask for the interrupt of OS-A.

[0033] Next, the register indicating the top memory
position of the page table is modified and the memory
space is made switched (S33). This operation is as
same as described before. Next, the notification of the
event between OS's is executed (S34), which will be de-
scribed later in detail. When switching from OS-A to OS-
B, the interrupt routine corresponding to the interrupt

- with its causal event recorded in step S15 of the proce-

dure shown in FIG. 4 is called and the suspended inter-
rupt operations are made executed (S35). Then, after
completing all the recorded interrupt operations (S36),
the context stored in S31 while suspending the interrupt
operations is recovered (S38), and the procedure visits
again the interrupt point of the switched OS. All the nec-
essary data are stored on the memory so that the con-
tent of the register may be deleted when OS-B is ex-
pected to be switched to OS-A while OS-B is staying in
an idle state, and the context is made not recovered
when the interrupt handler of OS-B is called (S37).

[0034] The interrupt controller 19 can mask the indi-
vidual interrupt operation by specifying its interrupt
number, and in case that OS-A operates independently,
the interrupt mask with lower priority is applied while
processing the interrupt operation of OS-A. in case that
the masked interrupt include the interrupt of OS-B, a
time day occurs in the corresponding interrupt operation
until the mask is released. In order to avoid this time
delay, it is required to modify the interrupt controller
process in the kernel of OS-A so that the interrupt oper-
ation with the interrupt number for OS-B may be made
disabled. On the other hand, the timer interrupt of OS-
A is processed only in a definite time interval in respon-
sive to the interrupt signal from the timer 14, and thus,
the timer 14 is not operated while OS-A is in operation,
but operated once at the initialization process. There-
fore, the interrupt signal from the timer 14 is received
temporarily by the inter-OS control software 23, and it

is allowed that the interrupt handler of OS-A is only

called in the steps after S03 of the procedure shown in
FIG. 3.

[0035] There is such a case that the inter-OS control
software 23 is called explicitly by either OS for the com-
munication function between a couple of OS's. A func-
tion for issuing and notifying events between OS's as a
basic function for communicating between a couple of
OS's is shown in FIG. 6.

[0036] There exists an OS-A event processing table
71 on the memory managed by the inter-OS control soft-
ware 23. Event numbers, i1, i2, ... iN, are assigned to
the events enabled to be processed, and there exist
their corresponding N entries. The event table is empty
at the initial state. After the OS-A program (Program A)
specifies the event number (i2) and notifies the occur-
rence of the event and issues the suspend request to

s

11 EP 1162 536 A1 12

the inter-OS control software 23 (S41), the inter-OS con-
trol program 23 records into the entry i2 of the corre-
sponding event on the table 71 that the program (Pro-

.gram A) is in a suspended state. The program issuing

the suspend request stops its operation by the program
interrupt function of OS-A. Next, if the OS-B program
(Program B) notifies an event occurrence with its event
number (iN)} (S42), the inter-OS control software 23
looks up'the corresponding entry iN in the table 71 and
judges the existence of the program suspended on OS-
A. In case that there is a suspended program, the re-
lease request for the suspended program (Program B)
is issuedto OS-A. In responsive to this request, the pro-
gram suspended on OS-A is restarted and recognized
that the suspended event is activated. The notification
of event activation is allowed from the program (Pro-
gram C) executed on OS-A (S44). Thus, the events is-
sued on an identical OS and the events issued on the
different OS's can be made stood by simultaneously. In
the similar manner, there is an event processing table
72 for OS-B is defined, and the event to be issued can
be watched by the program on OS-B in contrast to the
previous case.

[0037] The interrupt and restart function of the pro-

~gram used in the event notification described above can

be realized by a function of OS-A for reporting that the
inter-OS control software 23 operating as a device driver
starts and terminates the input and output operation to
the device. For OS-B, this function can be realized by
the inter-OS control software 23 calling a routine of OS-
B for starting and terminating directly the program.
Though the scope of suspend operation is assumed to
be on the basis of program in the explanation of the
event notification in the above description, the interrupt
and restart operation is applied on the thread-by-thread
basis in the operating systems providing a multi-thread
environment. Though the event process table is defined
so as to contain the program numbers, itis allowed that

-it may contain the structures in OS and their pointers for

judging the suspended programs in stead. In addition,
the system is composed with another buffer formed on
the memory managed by the inter-OS control software
23, and it is operated so that the data may be received
from the side of issuing an event and recorded onto the
buffer at the same time when the event is issued, and
that the data may be transferred when the suspended
state is released, and thus, a message communication
function having a function for waiting the event arrival
can be realized. ‘ ’

[0038] The inter-OS control software 23 provides a
function that allows an continuous operation of either
one of OS-A or OS-B, and interrupts and restart the oth-

r OS. :

[0039] At first, what is described is an operation for
terminating and restarting OS-B while operating contin-
uously OS-A. In case that OS-B is shut down, or that
OS-B is made terminated forcibly du to an exception,
a routine of the inter-OS control software 23 is called

10

15

20

25

30

35

40

45

50

55

and is made notified. As the inter-OS control software
23 does not allow OS-B to be switched from its suspend
state to being in operation from this notification onward,
only OS-A continues to be in operation. As OS-B is
made started in responsive to a designated initialization
routine called by the inter-OS control software 23, its
restart can be executed in the similar manner to its or-
dinary start-up.

[0040] Next, what is described is an operation for ter-
minating and restarting OS-A while operating continu-
ously OS-B. When OS-A is shut down, the program ex-
ecuted on OS-A detects the execution of shut-down op-
eration and notifies it to the inter-OS control software
23. When an exception occurs in OS-A, the interrupt
handier of the inter-OS control software 23 judges the
exception. In case that OS-A is shut down or an excep-
tion occurs, as the inter-OS control software 23 does not
allow OS-B to be switched from its suspend state to be-
ing in operation, then OS-A continues to be in operation.
However, if OS-A in a suspend state is made restarted .
in the similar manner to an ordinary start-up, common
hard wares including a bus shared with OS-B are initial-
ized, which may prevent OS-B from operating continu- -
ously. In order to solve this problem, a restart operation
is performed in the procedure shown in FIG. 7 after ter-
minating OS-A. When an electric power is applied, OS-
A initializes the common hard wares (S51). Then, the
inter-OS control software 23 operating as a device driv r
is provided with a timing for initialization process for the
hard wares managed by OS-A, in which the context is
stored (S52). In storing the context, the content of the
register and the content of all the memory area man-
aged by OS-A are copied on the memory area managed
by the inter-OS control software 23. Then, the hard

‘wares managed by OS-A are initialized by the individual

device drivers of OS-A (S53). After completing this ini-
tialization process, OS-A goes to an ordinary operation
state, and in case that OS-A is terminated due to a shut-
down operation or an exception, the inter-OS control -
software 23 shuts down only OS-A in the above de-
scribed manner (S54). Then, the inter-OS control soft-
ware 23 restores the context stored at OS-A automati-
cally or in responsive to the request from the program
of OS-B (S55). That is, by referring to the context stored
at the initialization process (S52) for the hard wares
managed by OS-A, the content of the memory at the
initialization state is recovered and the content of the
register is recovered, and then, the operation of OS-A
is restarted. With this procedure, as the execution of OS-
A is restarted immediately after completing the set-up
of the common hard wares managed by OS-A, and OS-
A can be operated in an ordinary mode after only initial-
izing the hard wares managed by OS-A, thereisnone d
for initializing again the common hard wares shared by
OS-B.

[0041] inthis embodiment, as for OS-A used as a ver-
satile OS, only the proc ss for the interrupt controller 19
is modified, and other process or components are not

13 EP 1 162 536 A1

modified. This makes it easier to add OS-B and the inter-
OS control software 23 for OS-A used as a versatile OS.
[0042] According to the present invention, when op-
erating plural OS's on a single CPU in the control appa-
ratus, the area of influence of the abnormal behavior of
OS's and their related programs can be localized, and
the abnormal state can be transferred to an ordinary op-
eration mode only by restarting the partial component
on the basis of the individual OS's without terminating
the whole control apparatus, which leads to increasing
the reliability of the system In addition, the operation of
OS's can be observed from the space independent of
~ the spaces for the ordinary operation of OS's and their
programs.

Clalms

1. An multiple operating system control method for a
multiple operating system having plural operating
systems executed in a digital arithmetic processor
in which a first operating system and a second op-
erating system of said plural operating systems are
alternately switched and executed on said digital
arithmetic processor, comprising

A process for reserving an interrupt number
or an input and output address used by said second
operating system for said first operating system
when starting said first operating system.

2. An multiple operating system control method of
Claim 1, wherein

a conversion table.used for said digital arithme-
tic processor converting a virtual memory ad-
dress to a physical address is defined said in-
dividual operating system; and

when executing a switching procedure for se-
lecting one of said operating systems, which is
called as a interrupt processing routine or
called by said first and second operating sys-
tems individuaily when an interrupt occurs, a
procedure for directing said digital arithmetic
processor to use conversion table for an oper-
ating system to be executed after switching is
executed when selecting and switching an op-
erating system.

3. An multiple operating system control method of
Claim 1, wherein

a priority levelis made assignedto an individual
operating system in operation; and

by means that an operating system with a lower
priority level is made not selected and execut-
ed, or is made switched in a definite time inter-
val and then an operating system with a higher
priority level is called back again while a pro-

10

15

20

25

30

35

40

45

50

55

14

gram executed on an operating system with a
higher priority level continues its operation a
program executed on said operating system
with a higher priority level is executed in pref-
erence.

¥

EP 1 162 536 A1

24 25 26 ,
/ / / Ja
D, — —J
SUPERVISORY | [DEVELOPMENT
AND CONTROL | [ENV IRONMENT CONTROL PROGRAM
PROGRAM PROGRAM »s |
OSPESRTAETMI N,? | 7] OSPERATING s
Y NTER- - SYSTEM B
O5-A1 | SOrruARE COVROLE (o5 ’/
~—HNPROCESSING TABLE
0S-A_EVENT |72
PROCESSING TABLE
7N e 7N 7N
CENTRAL |
'PROCESSING UNIT (CPU) -
Y 7 | ¢ 5
....... [lLTxC_" R .4 A Y 13
i [NETWORK H INTERRUPT |:i[INPUT AND|: [PHYSTCAL MEMORY
| INTERFACE | | i} |T™MER|loontRoLLer]ii|ouTpuT] poe’
| APPARATUS) U | APPARATUS]:
T | 1
: N N
131 132
....... Ve H)
CONTROLLED
3 APPARATUS |\ ,

0S-A ADDRESS

SPACE

(

PROGRAM

ACCESS <

AREA

KERNEL

ACCESS

AREA

61

FIG. 2

PHYS1CAL
MEMORY SPACE

FOR 0S-A
(KERNEL)]

FOR _INTER-0S
CONTROL
SOFTWARE

FOR PROGRAMS
EXECUTED ON
0S-A

FOR SHARED
SPACE FOR 0S-

A AND 0S-B

55

56 1

FOR 0S-B
(KERNEL)

57 7

FOR PROGRAMS
EXECUTED ON
| 05-B

X
51

10

0S-B ADDRESS

SPACE

\

PROGRAM
ACCESS
AREA

KERNEL
ACCESS
AREA

EP 1 162 536 A1

FIG. 3

AN ITERRUPT OCCURS
WHILE OS-A IN -
OPERAT | ON

So1
A

GENERATING STACK
FRAME

SOFTWARE

JUMP TO
I NTERRUPT

S02
CAUSE OF INTERRUPT _INTERRUPT
IS HARDWARE? =~/

HARDWARE

S03

\\')VEAUSE OF INTERRUPT\\

| INTERRUPT ~ 0S-A
R MANAGEMENT
APPARATUS

HANDLER FOR
0S-A

UMP 10
INTERRUPT

05 S HARDWARE?
MANAGEMENTAg\\‘* /
APPARATUS TIMER

0S-B TIME-UP_/CAUSE OF INTERRUPf\\,TIMER -Up

NT
HANDLER FOR
0S-A -

JUMP TO
INTERRUPT

-A

S04 NS HARDWARE?
N\ v OTHER

SWITCH T0 0S-B

OPERAT | ON

’ZR\ | 0S-A
S05

HANDLER FOR

IS HARDWARE?
NO

/

ENVIRONMENT)S:?AUSE OF INTERRUPT\ YES
S06

IS HARDWARE?
| YES

SWITCH T0 0S-B
OPERATION ENVIRONMENT

/

SOB’I

IN ERRUPT(TIM
HANDLER FOR OS

JUMP T0
INTERRUPT
POINT FOR OS-B

1

/;i?AUSE OF INTERRUPTN\. NO
507

ETURN T0 INTERRUPT
INT AT INTERRUPT
OCCURRENCE FOR 0S-A

=l § Ve WWW TR

FIG. 4

AN ITERRUPT OCCURS
WHILE 0S-B IN
OPERAT 10N

S11
N GENERATING STACK
FRAME

S12
CAUSE OF INTERRUPT™\, _INTERRUPT
IS HARDWARE? /'

HARDWARE

IS HARDWARE?
TIMER

INTERRUPT

'$13
\"Z:FAUSE OF INTERRUPT:>?APPARATUS

SOFTWARE

JUMP TO
INTERRUPT

MANAGEMENT

HANDLER FOR
0S-8

TP 10
INTERRUPT

-B

0S8
0S-B TIME-UP /CAUSE OF INTERRUPT TIMER-UP

S15 \JS HARDWARE?
Ny OTHER
TINE-UP 1S
RECORDED
(WITHHOLD)

YES

HANDLER FOR
0S-B

JUMP TO
INTERRUPT

Si14

NO /CAUSE OF INTERRUPTY -
IS HARDWARE?
S16

SWITCH 70 0S-B
OPERATION ENVIRONMENT

517

y

RETURN TO INTERRUPT
POINT AT INTERRUPT
OCCURRENCE FOR 0S-B

JUMP TO
INTERRUPT
POINT FOR 0S-8

12

HANDLER FOR
0S-B

EP 1 162 536 A1

y C START)
STORING CONTEXT j~S31
T
MODIFYING SET-UP FOR | S32
~ INTERRUPT CONTROLLER —
—
SWITCHING MEMORY 533
SPACES —
T
EVENT OCCURRENCE
WITHHOLD RELEASE) |(~—S%%
PROCESS ING
A 3
CALLING HANDLER FOR S35
HANDLER RECORDED INTERRUPT |

~RECORDED INTERRUPT
(WITHHOLD) REMAINS?

YES

S36

SWITCH TO INTERRUPT

HANDLER FOR 0S-B S37

CALLING HANDLER FOR |~._-S38
RECORDED [INTERRUPT

Y
JUMP_TO_INTERRUPT WP To INTERRUPT‘:)
{ POINT FOR 0S TO BE
(::sw|TCHED 10 <:) (:;HANDLER FOR 05-B

13

=l | Vb W FRT

FIG. 6

- g INTER-0S CONTROL
OSA — SOFTWARE

S41 |

PROGRAM-A

0S-A EVENT

NOTIFICATION
OF YT o 2 PROCESSING TABLE
. >'| PROGRAM-A WITHHELD
PROGRAM-B :
RELEASE OF 7~ PROGRAV-B WITHHELD
WITHOLD o0 ¥/ i
EVENT ~
NOTIFICATION : NUMBER 71
O e 7
¢ § 0S-B EVENT
PROGRAM—C ; PROCESS ING TABLE
S44

14

0S-B

PROGRAM-D

OTIFICATION

} 542

4 OF EVENT 2
i\ OCCURRENCE

EP 1 162 536 A1

FIG. 7

{ ELECTRIC POWER
APPLICAT ION
PROCESSING

S51
T INITIALIZING
COMMON HARD WARES

S52 |
™ CONTEXT RECORDING
e
S53._
“YINITIALIZING
{ INDIVIDUAL HARD WARES 0S-A OPERAT 0N
(0S-A MANAGEMENT) TERMINAT 1ON
A
S55

0S-A ORDIRARY OPERATION

S54.__

~ 0S-A OPERATION
TERMINAT 1ON

15

EPO FORM 1503 03 82 (PO4CO1)

EP 1 162 536 A1

European Patent
Office

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

Application Number

EP 00 30 4904

Category, Citation of ﬁt&r:s::‘ :vl‘lh lndlcasﬁon. where appropriate, l%eclzie:i?nm EI‘..:E%:I%SLIO:{ “&F“Tgs
X US 4 993 017 A (BACHINGER GERHARD EV AL) [1-3 GO6F9/46
12 February 1991 (1991-02-12)
* abstract #
column 2, line 12 - line 20 *
* column 3, line 7 - line 55 *
+ column 5, 1ine 45 - column 6, line 14 *
* column 10, line 41 - line 50 *
* column 15, line 42 - line 55 *
% column 16, 1ine 31 - 1ine 44 *
D,A |EP 0 543 610 A (IBM) 1-3
26 May 1993 (1993-05-26)
* the whole document *
TECHNICAL FIELDS
SEARCHED on.CL7)
GO6F
The present ssarch report has been drawn up for all clalms
Place of search Date of complstion of the search Examines
THE HAGUE 20 November 2000 Fonderson, A
CATEGORY OF CITED DOCUMENTS T : theory or principle underlying the invention
E : eartier patent document, but published on, or
X : particulariy relevant if taken alone afer the fiting date
: ' iy il C ined wil_h h O : document clied in the application

" document of the same category
A : technological background
QO : non—wiiiten disciosure

L - document clled for other reasons

P : intermediate document) document

& : member of the same patent family. comesponding

16

EP 1 162 536 A1

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 00 30 4904

This annex tists the patent tamily membersrelating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDP flle on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

20-11~2000
Patent document Pubtication Patent tamity Publication
cited In search report - date member(s) date
USs 4993017 A 12-02-1991 AT 107458 T 15-07-1994
CA 1318958 A 08-06-1993
DE 58907868 D 21-07-1994
EP 0333123 A 20-09-1989
EP 0543610 A 26-05-1993 JP 2066372 C 24-06-1996
- JP 5151003 A 18-06-1993
JP 7099501 B 25-10-1995

EPO FORM P0as9

For more details about this annex : see Official Joumnal of the European Patent Office. No. 12/82

17

-
M TR

S

R ‘xﬁ‘f&&«‘\fv e F

THIS PAGE BLANK wspo)

o)

i
b
£
£

	2003-11-17 Foreign Reference

